

Université Cheikh Anta Diop de Dakar

OFFICE DU BACCALAUREAT

Téléfax (221) 824 65 81 - Tél. : 824 95 92 - 824 65 81

14 G 27 A 01

Durée : 4 heures

Séries : S2-S2A – Coef. 6 Séries : S4 – S5 – Coef : 5

Epreuve du 1er groupe

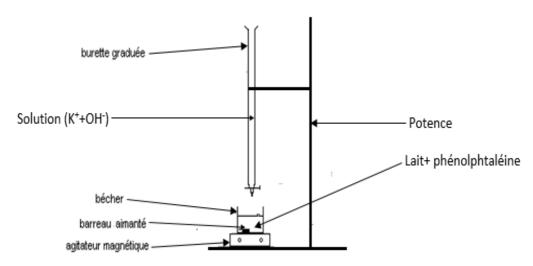
CORRIGE DE L'EPREUVE DE SCIENCES PHYSIQUES

EXERCICE 1

1.1. Equation-bilan de la réaction : $HOOC - CH_2 - CHOH - COOH$ $\xrightarrow{\Delta} CH_3 - CHOH - COOH + CO_2$

1.2.

1.2.1. Schéma annoté du dispositif de dosage :



1.2.2. Equation-bilan de la réaction support du dosage du lait :

$$CH_3 - CHOH - COOH + (K^+ + OH^-) \rightarrow CH_3 - CHOH - COO^- + K^+ + H_2O$$

Déterminons la constante de réaction :

Si on note l'acide lactique AH et A sa base conjuguée on a :

$$K = \frac{\begin{bmatrix} A^{-} \end{bmatrix}}{\begin{bmatrix} AH \end{bmatrix} \begin{bmatrix} OH^{-} \end{bmatrix}} = \frac{\begin{bmatrix} A^{-} \end{bmatrix} \begin{bmatrix} H_{3}O^{+} \end{bmatrix}}{\begin{bmatrix} AH \end{bmatrix} \begin{bmatrix} OH^{-} \end{bmatrix} \begin{bmatrix} H_{3}O^{+} \end{bmatrix}} = \frac{K_{a}(AH/A^{-})}{K_{a}(H_{2}O/OH^{-})} = \frac{10^{-3.9}}{10^{-14}} = 10^{10.1} = 1,26.10^{10}$$

 $K = 1,26.10^{10} > 10^3$ donc la réaction est totale.

1.2.3. Définition de l'équivalence acido-basique : il y a équivalence acido-basique lorsque les réactifs (acide et base) sont mélangés dans des proportions stœchiométriques.

Calcul de la concentration massique :

A l'équivalence on a :
$$\frac{n_A}{1} = \frac{n_{OH^-}}{1} \Rightarrow C_A \cdot V_A = C_b \cdot V_{bE}$$
 or $C_A = \frac{C_m}{M_A} \Rightarrow \frac{C_m}{M_A} V_A = C_b \cdot V_{bE} \Rightarrow C_A \cdot V_{bE} \Rightarrow C_A$

$$C_{m} = \frac{C_{b} \cdot V_{bE} \cdot M_{A}}{V_{A}}$$
 A.N: $C_{m} = \frac{0.1x8,4x90}{20} = 3.8$

 $C_m = 3.8 \text{ g.L}^{-1} > 1.8 \text{ g.L}^{-1}$; donc le lait dosé n'est pas frais.

1.2.4. Afin d'avoir un lait frais, il faut « stopper » la transformation du lactose en acide lactique par abaissement notoire de la température : on peut conserver le lait au réfrigérateur.

1.2.5. Diagramme de prédominance :

Acide lactique prédomine pK_a Ion lactate prédomine pH 3,9 4,9

Le pH du lait étudié étant supérieur au pk_a du couple, la forme basique (ion lactate) prédomine.

EXERCICE 2

- 2.1. Préparation du butanoate de méthyle
 - **2.1.1.** Le groupe fonctionnel présent dans le butanoate de méthyle :

$$CH_3 - CH_2 - CH_2 + COO - CH_3$$
 Fonction ester

- 2.1.2. La famille du réactif B : alcool
- 2.1.3. Formules semi-développées et noms des réactifs A et B:

Pour A:
$$CH_3 - CH_2 - CH_2 - COOH$$
; acide butanoïque

Pour B :
$$HO - CH_3$$
 ; méthanol

2.1.4. Equation-bilan de la réaction entre A et B :

$$CH_3-CH_2-CH_2-COOH+CH_3-OH \quad \stackrel{\rightarrow}{\leftarrow} \quad CH_3-CH_2-CH_2-COO-CH_3+H_2O$$

C'est la réaction d'estérification (directe)

Caractéristiques de la réaction: elle est lente, limitée et athermique.

2.1.5. Calcul des quantités de matière minimales de A et B :

$$r = \frac{n_{ester}^{obtenu}}{n_{ester}^{th\acute{e}orique}}.100 \quad or \quad n_{ester}^{th\acute{e}orique} = n_A^{min\ imal} = n_B^{min\ imal} \Rightarrow r = \frac{n_{ester}^{obtenu}}{n_A^{min\ imal}}.100 \Rightarrow$$

$$n_{A}^{\text{min}imal} = \frac{n_{ester}^{obtenu}}{r}.100$$
 A.N: $n_{A}^{\text{min}imal} = \frac{1}{67}.100 = 1,49 \, mol$ $n_{A}^{\text{min}imal} = n_{B}^{\text{min}imal} = 1,49 \, mol$

- **2.2.** Etude cinétique de la réaction :
 - **2.2.1.** Si $n_A = 0.42 \times 1 = 0.42 \text{ mol}$; l'abscisse obtenue à partir du graphe vaut : $t_1 \approx 60 \text{ min}$.
 - 2.2.2. Déduction de la quantité de matière de D formée :

$$n_{\scriptscriptstyle D}^{\scriptscriptstyle form\acute{e}} = n_{\scriptscriptstyle A}^{\scriptscriptstyle r\acute{e}agi} \quad or \quad n_{\scriptscriptstyle A}^{\scriptscriptstyle r\acute{e}agi} = n_{\scriptscriptstyle 0A} - n_{\scriptscriptstyle A}^{\scriptscriptstyle res\, tan\, t} \quad \Rightarrow \quad n_{\scriptscriptstyle D}^{\scriptscriptstyle form\acute{e}} = n_{\scriptscriptstyle 0A} - n_{\scriptscriptstyle A}^{\scriptscriptstyle res\, tan\, t} \quad \quad \text{A.N} : n_{\scriptscriptstyle D}^{\scriptscriptstyle form\acute{e}} = 1 - 0.42 = 0.58 \, mol$$

$$n_D^{\text{form\'e}} = 0.58 \text{ mol}$$

2.2.3. Calcul de la vitesse moyenne entre t = 0 et $t = t_1 = 60$ min :

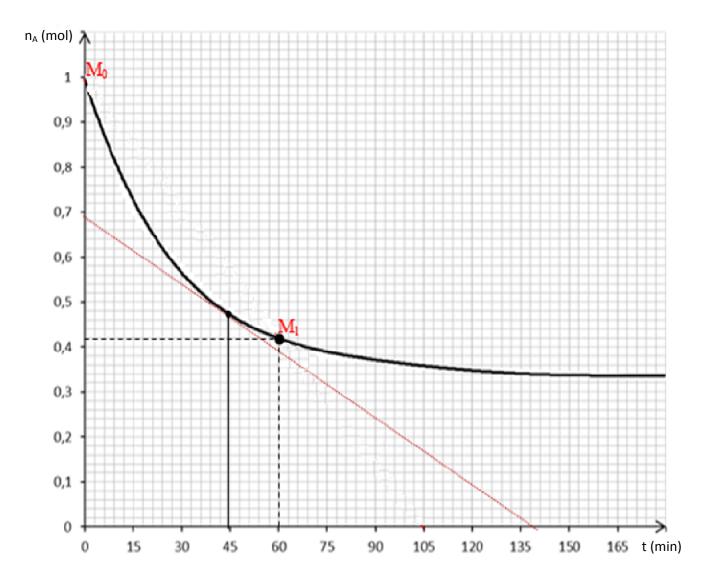
$$V_{m} = \frac{n_{A}(t_{0}) - n_{A}(t_{1})}{t_{1} - t_{0}} \qquad \text{AN}: \quad V_{m} \approx \frac{1 - 0.42}{60} = 9.67.10^{-3} \text{mol.min}^{-1}$$

2.2.4. Vitesse instantanée à t = 45 min:

La vitesse instantanée est donnée par la relation: $V = -\frac{dn_A}{dt}$; graphiquement elle correspond à la

valeur absolue du coefficient directeur de la tangente à la courbe au point d'abscisse $t=45\,\text{min}$ (voir courbe) :

On trouve:
$$V(t = 45 \text{ min}) \simeq 5,11.10^{-3} \text{ mol.min}^{-1}$$



2.2.5. Détermination sans calcul de la vitesse moyenne entre t_2 = 165 min et t_3 = 180 min :

A partir de la date $t \approx 150$ min, il n y a plus variation de la quantité de matière de A : la vitesse moyenne est nulle ; la réaction est terminée.

EXERCICE 3

3.1. Enoncer du théorème du centre d'inertie : dans un référentiel galiléen, la somme des forces extérieures appliquées à un système de masse m est égale au produit de sa masse par le vecteur accélération $\overset{\rightarrow}{a_G}$ de son centre d'inertie : $\sum \vec{F}(exterieures) = m.\overset{\rightarrow}{a_G}$.

3.2. Caractéristiques du vecteur-accélération :

On considère le projectile comme système et on rapporte le mouvement au référentiel terrestre supposé galiléen. L'action de l'air étant négligée, le projectile n'est soumis qu'à son poids.

T.C.I
$$\sum \vec{F}(exterieures) = \vec{m.a} \Rightarrow \vec{P} = \vec{m.a} \Rightarrow \vec{m.g} = \vec{m.a} \Rightarrow \vec{a} = \vec{g}$$
 \vec{a} $\begin{cases} direction : verticale \\ sens : orienté vers le bas \\ norme : a = g = 10 m.s^{-2} \end{cases}$

3.3. Montrons que le mouvement est plan :

$$\vec{a} \begin{cases} a_x = 0 \\ a_y = -g \Rightarrow \vec{V} \begin{cases} V_x = V_0 \cos \alpha \\ V_y = -gt + V_0 \sin \alpha \Rightarrow \vec{OM} \end{cases} \begin{cases} x = V_0 \cos \alpha . t \\ y = -\frac{1}{2}g.t^2 + V_0 \sin \alpha . t \\ z = 0 \end{cases}$$

x et y varient au cours du temps alors que z = o quelque soit la date t: le mouvement du projectile est plan et s'effectue dans le plan (xOy).

3.4. Equation cartésienne de la trajectoire :
$$x = V_0 \cos \alpha . t \Rightarrow t = \frac{x}{V_0 \cos \alpha}$$
 or $y = -\frac{1}{2}g.t^2 + V_0 \sin \alpha . t$

en remplaçant t dans l'expression de y on obtient : $y = -\frac{g}{2.V_0^2 \cos^2 \alpha}.x^2 + x.\tan \alpha$

3.5. Ordonnée du projectile pour
$$x_0 = 800 \text{ m}$$
 : $y_0 = -\frac{g}{2.V_0^2 \cos^2 \alpha}.x_0^2 + x_0.\tan \alpha$

$$y_0 = -\frac{10}{2.100^2 \cos^2 30^\circ}.800^2 + 800.\tan 30 = 35.2 m$$

 y_0 est supérieure à la hauteur H; le projectile passe au-dessus de l'oiseau ; l'oiseau ne sera pas atteint par ce projectile.

3.6. .

3.6.1. Expression de la portée en fonction de V_0 , g et α :

Soit P le point d'impact au sol : $y_p = 0$

$$\Rightarrow -\frac{g}{2.V_0^2 \cos^2 \alpha}.x_P^2 + x_P.\tan \alpha = 0 \Rightarrow x_P = \frac{2.V_0^2 \cos^2 \alpha.\tan \alpha}{g} \Rightarrow x_P = \frac{2.V_0^2 \cos^2 \alpha.\sin \alpha}{g.\cos \alpha} = \frac{2.V_0^2 \cos \alpha.\sin \alpha}{g}$$

$$x_{P} = \frac{2.V_{0}^{2} \cos \alpha . \sin \alpha}{g} = \frac{V_{0}^{2} . \sin 2\alpha}{g}$$

$$x_{P} = \frac{V_{0}^{2} \sin 2\alpha}{g}$$

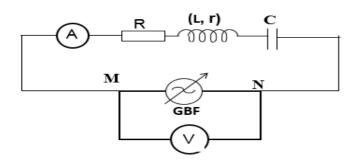
3.6.2. Calcul de la portée maximale :
$$x_p = \frac{V_0^2 \sin 2\alpha}{g}$$
 est maximale si $\sin(2\alpha)=1$

$$\Rightarrow x_{P \text{max}} = \frac{V_0^2}{Q} A.N : x_{P \text{max}} = \frac{100^2}{10} = 1000 m$$
 $D = x_{P \text{max}} = 1 km$

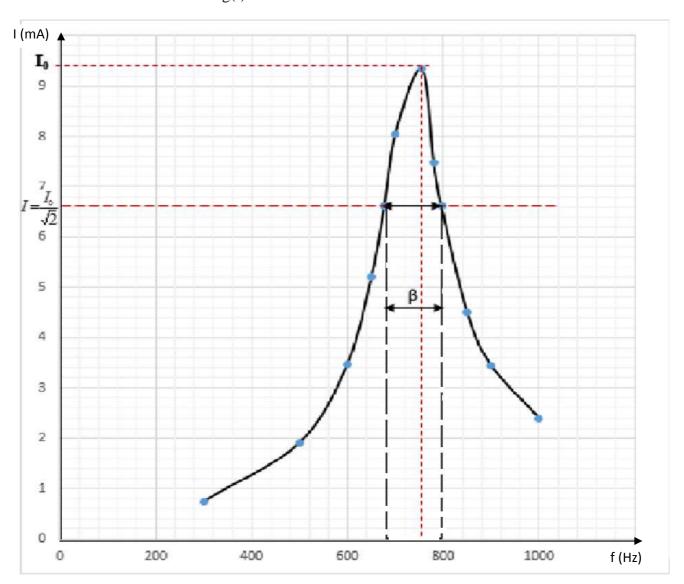
3.6.3. Rayon du champ de tir :
$$r = 1.1D = 1.1km$$

EXERCICE 4

4.1. Schéma du circuit :



4.2. . $\textbf{4.2.1.} \ \text{Le trac\'e de la courbe I=g(f)}$



4.2.2. Graphiquement fo est obtenue pour I maximale ($I_0 \approx 9,35 \text{ mA}$) : $f_0 \approx 755 \text{ Hz}$

4.2.3. Calcul de l'impédance Z pour $f = f_0$:

On est à la résonance d'intensité, donc
$$Z = R_{\text{totale}}$$
 et $Z = \frac{U}{I_0}$ $A.N: Z = \frac{1}{9,35.10^{-3}} = 107 \,\Omega$

Déduction de r :
$$R_{totale} = r + R \implies r = R_{totale} - R$$
 $A.N : r = 107 - 80 = 27 \Omega$ $r = 27 \Omega$

4.2.4. La largeur de la bande passante : c'est l'intervalle de fréquence pour lequel

$$I = \frac{I_0}{\sqrt{2}} = \frac{9,35}{\sqrt{2}} = 6,61 \, mA$$

Graphiquement on obtient $\Delta f = \beta = 120 \text{ Hz}$

4.2.5. Calcul de l'impédance aux extrémités de la bande passante :

$$Z_1 = \frac{U}{I_1} \text{ et } Z_2 = \frac{U}{I_2} \text{ or } I_1 = I_2 = \frac{I_0}{\sqrt{2}} = 6.61 \text{ mA} \Rightarrow Z_1 = Z_2 = \frac{1}{6.61.10^{-3}} = 151\Omega$$

4.2.6. Calcul de L et C :

$$\beta = \frac{R+r}{2\pi . L} \Rightarrow L = \frac{R+r}{2\pi . \beta} \qquad A.N: \ L = \frac{107}{2\pi . 120} = 0.14 H$$

$$L.C.\omega_0^2 = 1 \Rightarrow L.C.4\pi^2.f_0^2 = 1 \Rightarrow C = \frac{1}{4\pi^2.L.f_0^2} \quad A.N: C = \frac{1}{4\pi^2.0.142.755^2} = 3.13.10^{-7} F$$

$$L = 140 \, mH$$
 et $C = 313 \, nF$

EXERCICE 5

5.1. L'élément mercure, traceur isotopique :

5.1.1. La radioactivité β⁻ correspond à l'émission d'électrons par un noyau radioactif.

Equation de la réaction :
$${}^{203}_{80}Hg \rightarrow {}^{0}_{-1}e + {}^{A}_{Z}Y$$

Les lois de conservations donnent : 203 = A et 80 = -1+Z ; d'où Z= 81 donc ${}_z^AY$ correspond au ${}_{81}^{203}Tl$ d'où l'équation ${}_{80}^{203}Hg \rightarrow {}_{-1}^{0}e + {}_{-1}^{203}Tl$

5.1.2. L'activité à t = 0:

$$A_0 = \lambda . N_0 \Rightarrow or \quad \lambda = \frac{\ln 2}{T} \Rightarrow A_0 = \frac{N_0 . \ln 2}{T} \qquad A_0 = \frac{2,96.10^{21} . \ln 2}{46.69 \times 24 \times 3600} = 5,09.10^{14} Bq$$

5.1.3. Durée au bout de laquelle l'activité diminue de 0,14.A₀:

A cette date

$$A = A_0 - 0.14. A_0 = 0.86. A_0 \implies A_0.e^{-\lambda t} = 0.86. A_0 \implies -\lambda .t = \ln 0.86 \implies t = -\frac{\ln 0.86}{\lambda} = -T. \frac{\ln 0.86}{\ln 2} \implies t = -46.69 \frac{\ln 0.86}{\ln 2} = 10.16 jours \qquad t = 10.16 jours$$

5.2. Sécurisation des billets de banque par le mercure :

5.2.1. Le spectre d'émission ou d'absorption du mercure est discontinu.

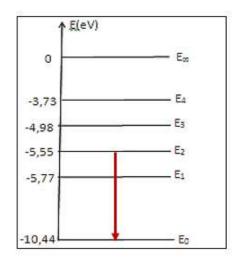
5.2.2. Détermination de la transition responsable de cette fluorescence :

La lumière émise par la lampe à vapeur de sodium résulte d'une désexcitation des atomes de mercure. Cette lumière excite les nanos pigments qui émettent à leur tour par fluorescence.

$$E_{photon}(\acute{e}mis) = \Delta E = \frac{hC}{\lambda_1}$$
 $A.N: E_{photon}(\acute{e}mis) = \frac{6.62.10^{-34}.3.10^8}{253.6.10^{-9}} = 7.83.10^{-19} J = 4.89 eV$

On vérifie que cette énergie correspond à : $\Delta E = E_2 - E_0$: elle correspond donc à la transition du niveau E_2 vers le niveau E_0 pour le mercure.

5.2.3. Représentation de la transition :



5.2.4. La longueur d'onde maximale λ_2 :

Lors d'une désexcitation d'un niveau p vers un niveau n la longueur d'onde de la radiation émise est donnée par : $\lambda = \frac{hC}{E_n - E_n}$; comme cette désexcitation mène au niveau fondamentale donc

$$En = E_0 \implies \lambda = \frac{hC}{E_p - E_0}$$

Pour que λ soit maximale il faut que E_p-E_0 soit minimale donc $E_p=E_1$

$$\Rightarrow \lambda_{\text{max}} = \lambda_2 = \frac{hC}{E_1 - E_0} \qquad \lambda_2 = \frac{6,62.10^{-34}.3.10^8}{(-5,77 + 10,44).1,6.10^{-19}} = 2,66.10^{-7} m$$

$$\lambda_2 = 2,66.10^{-7} m = 266 nm$$

5.2.5. Détermination de λ_3 :

$$E_{2} - E_{1} = \frac{hC}{\lambda_{3}} \Rightarrow \lambda_{3} = \frac{hC}{E_{2} - E_{1}} \quad \lambda_{3} = \frac{6,62.10^{-34}.3.10^{8}}{(-5,55 + 5,77).1,6.10^{-19}} = 5,64.10^{-6} m$$

$$\lambda_{3} = 5,64.10^{-6} m$$

Relation entre λ_1 , λ_2 et λ_3 :

On a:
$$E_2 - E_0 = (E_2 - E_1) + (E_1 - E_0) \Rightarrow \frac{hC}{\lambda_1} = \frac{hC}{\lambda_2} + \frac{hC}{\lambda_2} \Rightarrow \frac{1}{\lambda_1} = \frac{1}{\lambda_3} + \frac{1}{\lambda_2}$$